
Esoteric Programming Languages

An introduction to Brainfuck, INTERCAL, Befunge, Malbolge, and Shakespeare

Sebastian Morr
Braunschweig University of Technology

sebastian@morr.cc

ABSTRACT
There is a class of programming languages that are not actu-
ally designed to be used for programming. These so-called
“esoteric” programming languages have other purposes: To
entertain, to be beautiful, or to make a point. This paper
describes and contrasts five influential, stereotypical, and
widely different esoteric programming languages: The mini-
mal Brainfuck, the weird Intercal, the multi-dimensional
Befunge, the hard Malbolge, and the poetic Shakespeare.

1. INTRODUCTION
While programming languages are usually designed to be

used productively and to be helpful in real-world applications,
esoteric programming languages have other goals: They can
represent proof-of-concepts, demonstrating how minimal a
language syntax can get, while still maintaining universality.
They might help to prove mathematical theorems or provide
boundaries in complexity analyses. The design of esoteric
programming languages can be seen an artistic process, and
the resulting languages can be expressions of human intellect,
wit, and aesthetic taste. Or they might be created as a
kind of competitive sport, a challenge for the language’s
designer or for its users. Finally, there are joke languages
designed to enjoy the authors themselves, the users, or even
the readers of the specification. All of these motivations and
the languages’ unique, unusual properties make it worthwhile
to study esoteric programming languages in more detail.
The word “esoteric” comes from the ancient Greek eso-

terikos, meaning “belonging to an inner circle”, and originally
referred to Pythagoras’ secret teachings [1]. It evolved to
mean “mystic”, or “having to do with highly theoretical con-
cepts without obvious practical application”. The first usage
of the term “esoteric” in the context of “weird programming
languages” was probably on a website called Esoteric Topics
in Computer Programming, published by Chris Pressey, the
inventor of Befunge, around 1997 [2].
For this paper, we picked five iconic esoteric programming

languages, each of which demonstrates a unique property:
Brainfuck attempts to have a minimal syntax, which con-
sists only of eight different characters. Nevertheless, it can
be shown to be Turing-complete. The authors of INTER-
CAL wanted to create a weird language, that had as many
differences to other languages known at that time as possible.
Befunge was among the first two-dimensional languages,
the user can use directional commands to control the pro-
gram flow. Malbolge was designed to be as hard as possible
to use. It uses multiple encryption mechanisms, and it took
two years to write the first program. Finally, Shakespeare

requires its programs to look like Shakespearean plays, mak-
ing it a themed language. It is not obvious at all that the
resulting texts are, in fact, meaningful programs. For each
language, we are going describe its origins, history, and to-
day’s significance. We will explain how the language works,
give a meaningful example and mention some popular imple-
mentations and variants.
All five languages are imperative languages. While there

are esoteric languages which follow declarative programming
paradigms, most of them are quite new and much less popu-
lar. It is also interesting to note that esoteric programming
languages hardly ever seem to get out of fashion, because
of their often unique, weird features. Whereas “real” multi-
purpose languages are sometimes replaced by more modern
ones that add new features or make programming easier
in some way, esoteric languages are not under this kind of
pressure, because they do not attempt to be usable. Instead,
they can often be appreciated like a piece of art, much like
an oil painting can be admired for hundreds of years.

2. PRELIMINARIES
We first define some terms that are relevant when dis-

cussing esoteric programming languages.

2.1 Turing machines
In his 1937 paper On Computable Numbers [3], Alan Tur-

ing specified a simple machine that he used to define what
“computing” means. It consists of an infinite one-dimensional
tape with cells that can hold symbols, a head, which moves
over the tape and is able to read and write symbols, and
a finite state machine, which specifies what to do when a
specific symbol is read. This simple architecture is so pow-
erful that it can simulate all other computer models, and
thus is able to compute every computable sequence. In fact,
one can construct a Turing machine that reads a symbolic
description of another Turing machine, and some input, and
then simulates that other machine. This is what we call a
universal Turing machine.

2.2 Turing completeness
If a system can be used to simulate a universal Turing

machine, it is called Turing-complete. By definition this
means that this system is as powerful as the class of Turing
machines, meaning they as well can compute any computable
sequence. Turing completeness is an important property of
universal programming languages. It is highly probable
that all modern general-purpose programming languages are
Turing-complete, but not all esoteric programming languages

1

are, which makes it interesting to look at this property. To
be really Turing-complete always would require access to
an infinite amount of memory, as the systems need to be
able to handle arbitrarily large input. Of course, physical
machines cannot provide unlimited memory, which is why
this restriction is commonly ignored.

2.3 Standard programs
When learning or creating a new programming language,

one of the first tasks is often to write a program that outputs
text, conventionally the string “Hello, world!”. This phrase
was made popular by the first edition of the 1978 book The
C Programming Language by Brian Kernighan and Dennis
Ritchie [4]. Being able to write a Hello world program in a
language demonstrates that it is possible to compile/interpret
a simple program in it and that it can output text.
The second standard program is called 99 Bottles of Beer,

which prints the text of a North American folk song. The
song repeats lines like “99 bottles of beer on the wall, 99
bottles of beer. Take one down, pass it around, 98 bottles of
beer on the wall...” until there are no more bottles left. The
ability to program this demonstrates that the language can
handle loops and conditional execution.
Finally, another standard programming task is to write

a quine, a program which prints out its own source code.
Usually, it is considered insufficient to simply open the
source file and reading from it; instead, the source code
must contain all information to reproduce itself. The term
was coined by Douglas Hofstadter [5] in the honor of Willard
Van Orman Quine, an American philosopher who studied self-
referentiality. Later, the term was applied to self-replicating
programs. The first known quine appeared in a 1972 article
by Paul Bratley and Jean Millo and was written in a variant
of Algol [6].

3. BRAINFUCK
The first language we are going to look at, Brainfuck, is

a well-known minimalist programming language, aiming for
a small language syntax and small compilers. Its programs
consist of only eight different characters, nevertheless, it was
proven to be Turing-complete.

3.1 Origin
Brainfuck was designed by Urban Müller in 1993. At that

time, he was a Swiss physics student who in 1992 took over
a small online archive for Amiga software. The archive grew
more popular, and was soon mirrored around the world.
Today, it is the world’s largest Amiga archive, known as
Aminet [7]. We mention this platform because in 1993, Müller
uploaded the first Brainfuck compiler to Aminet, in the form
of a machine language implementation that compiled to a
binary with a size of 296 bytes [8]. The program came with
a Readme file, which briefly described the language, and
challenged the reader “Who can program anything useful
with it? :)”. Müller included some already quite elaborate
examples as well.
The language’s name is a reference to the slang term “brain

fuck”, which refers to things that are so complicated or un-
usual that they go beyond the limits of one’s comprehension.
As Aminet grew, the compiler became popular among the

Amiga community, and in time it was implemented for other
platforms. Refer to Section 3.6 for an overview of Brainfuck
variants.

3.2 Description
A Brainfuck program operates on an infinite linear arrange-

ment of memory cells, often called the tape. Each memory
cell contains an unsigned byte value (a number between 0
and 255), which is initialized to 0 when the program starts.
Additionally, Brainfuck maintains a head, which points to
one of the memory cells.
Syntax-wise, a Brainfuck program can consist of eight

different characters, which have the following semantics:

> Move the head to the right.

< Move the head to the left.

+ Increment the current cell’s value.

- Decrement the current cell’s value.

, Read an Ascii character from the user, write its value to
the current cell.

. Output the current cell’s value as an Ascii character.

[If the current cell contains a 0, skip to the matching
closing bracket.

] If the current cell does not contain a 0, return to the
matching opening bracket.

Other characters in the source code are ignored (which
allows for inline documentation, and for embedding Brainfuck
in other programs). While in- or decrementing, the cells’
values always wrap to stay between 0 and 255.

Using the brackets, the programmer can create loops: The
expression

[code]

will execute code until the cell currently pointed to is 0
when encountering the closing bracket. For example, the
expression

[->+<]

will add the current cell’s value to the next cell: Each time
the loop is executed, the current cell is decremented, the
head moves to the right, that next cell is incremented, and
the head moves left again. This sequence is repeated until
the starting cell is 0. Another gadget which we will use in
the following example is

+[->+]-

which moves the head to the right until it points to a cell
with the value 255. The + operators increment the cell’s
value before each check, and if it was a 255 before, the value
will wrap to a 0, and the loop will terminate. The - operators
reset the cell to its original value before the cell is left.

3.3 Example
The following program reads a sequence of Ascii values

from the user, and prints their binary representations. In or-
der to demonstrate Brainfuck’s unique aesthetic, the program
is first shown in its minified form:

1 -[>,[<<[-<]++[->+]->-]<<<<<<<<<+[-<++++++++[->+
2 +++++ <] >.[-] >+] -]

2

� �
Input: hello
Output: 0110100001100101011011000110110001101111� �
Let us look at it in more detail. The following commented

version can be broken down into three sections: Line 1 sets
up the basic memory layout, which is restored for each
character the user enters. The program uses a “sentinel”
cell with the special value 255 to facilitate seeking back
to the end of the bit array. Line 10 reads the character,
lines 11–18 implement a simple shift register to calculate
the binary representation. The remaining lines print the
binary digits by calculating the digits’ Ascii values (48 for
“0” or 49 for “1”). Note that lines 21—26 are equivalent
to ++,
which would also increment the cells’ values by 48, but we
wanted to demonstrate a more esoteric (and a more concise)
approach here, which is why the actual code increases the
value by 6 eight times.

1 - Memory layout :
2 0 0 0 0 0 0 0 0 (255) 0
3 \ _____ a _____ / b c
4

5 a: bits to be calculated
6 b: sentinel (current cell)
7 c: cell for user input
8

9 [In an endless loop:
10 >, Read a char to c
11 [As long as it is not 0:
12 << Move to the leftmost bit
13 [-<] As long as the head is on a 1:
14 Set to 0 and move left
15 + On the first 0: Set to 1
16 +[->+]- Go back to the sentinel
17 >- Decrement our number
18]
19 <<<<<<<<< Seek to the first digit
20 +[- Until we ’re back at 255:
21 Increment the cell by 48 by
22 <++++++++ putting an 8 in the previous
23 [cell and decrementing our cell
24 - by 6 that many times
25 >++++++ <
26]
27 >. Print its ASCII value
28 [-] Restore the cell to 0
29 > And go to the next digit
30 +]-
31]

3.4 Computational Class
Brainfuck was proven to be Turing-complete by Daniel

Cristofani [9], who used it to implement a simple universal
Turing machine as described by Yurii Rogozhin [10].

Brainfuck is an example of a so-called Turing tarpit. This
term was coined in 1992 by Alan Perlis, first recipient of the
Turing Award, who warned against environments “in which
everything is possible but nothing of interest is easy” [11], in
reference to geologic asphalt lakes, whose thick consistency
slows down movements for everything inside. Turing tarpit
languages, like Brainfuck, provide a handful of very general
and flexible mechanisms, which can be used to write any
program, but it is seldom practical to do so, because the
languages provide so little abstraction that the programs get
very long or complicated.

3.5 Implementations
Together with his original machine language implementa-

tion, Müller published a C interpreter, which, with a minor
modification, can still be used on modern machines. Besides
that implementation, there are numerous others in all imag-
inable languages, some of which achieve very fast runtimes by
optimizing the code in numerous ways, including Awib [12],
a Brainfuck compiler written in Brainfuck itself, which is
able to compile to Linux executables, Tcl, Ruby, Go, and
C. Fans of the language succeeded in implementing even
smaller compilers than the original version, the smallest one
currently is an MS-DOS binary with a size of 98 bytes1 [13].

3.6 Variants
The esolangs wiki [14], a large database of esoteric pro-

gramming topics, and informal successor of Chris Pressey’s
previously mentioned Esoteric Topics site, lists 162 articles
in the “Brainfuck derivatives” category and 33 “Brainfuck
equivalents”, which were all inspired by Müller’s original
implementation. There are variants which operate on two
tapes (DoubleFuck), or restrict the cells to binary values,
thus making the + and - operations identical (Boolfuck).
Some add more operators (like Brainfork, which adds a Y
command for forking the process), others try to reduce the
command set even further (BitChanger also works on bit
cells and defines } := >+. The original > can be emulated with
}<}). The joke variant Ook! behaves exactly like Brainfuck,
but its operators are pairs of Orangutan words like “Ook.
Ook?” for > or “Ook! Ook!” for -.
Because there was never a precise language specification,

the various implementations can differ in some aspects:
Whereas the general idea assumes an infinitely long tape,
actual implementations always have some kind of memory
limit. The original compiler used a tape of 30,000 cells, with
the pointer starting on the leftmost one. Some implemen-
tations extend the memory array when the pointer steps
out of the allocated range, others crash, others again will
wrap around the tape. The size of a cell was one byte in
the original implementation, wrapping around to 255 when
subtracting from 0, and many implementations follow that
design. Others use 16- or 32-bit numbers, or even signed
numbers, allowing the cells to have negative values. Another
implementation difference is about what happens when a
Brainfuck programs wants to read a byte, but there is no
more input—for example, because the input was a file which
has reached the end-of-file condition. In many applications,
it is important to know that there will be no more input.
Müller’s implementation leaves the current cell unchanged in
this case, others set it to 0, others to -1 (this requires cells
which are larger than bytes).
Interestingly, Brainfuck had a much earlier predecessor:

In 1964, the theoretical computer scientist Corrado Böhm
designed the language P ′′, to describe a specific family of
Turing machines [15]. Böhm showed that this language
was Turing-complete long before Brainfuck was implemented.
Programs in P ′′ consist of words over the alphabet {R, λ, (,)}.
P ′′ operates on a left-infinite tape, which can contain symbols
of an alphabet {a0, a1, . . . , an}. Initially, each memory cell
contains a0, the blank symbol. The symbols’ semantics are
as follows:

1Fun fact: This sentence is about twice as long as that
compiler.

3

R Move the head to the right.

λ Increment the current symbol, then move the memory
pointer to the left.

(q) Repeat q while the current symbol does not equal the
blank symbol.

Each Brainfuck program can be translated to a P ′′ program
using the following equivalents:

+→ r = λR

-→ r′ =
n︷ ︸︸ ︷

rrr . . . r

>→ R

<→ r′λ

[→ (
]→)

That is, to perform a Brainfuck increment, increment and
move left, then move right. To decrement, increment the
current symbol n times, until it “wraps around” and comes to
halt one symbol before it started. To move left, “decrement”
the cell, then perform a λ operation.

3.7 Significance
Nowadays, Brainfuck is probably the best-known esoteric

programming language in the world. It is a common pro-
gramming exercise to implement a Brainfuck interpreter or
compiler in another language. There is a vast number of
Brainfuck programs, including an award-winning text adven-
ture [16].

4. INTERCAL
This language was created with the main goal to have as

few similarities with existing languages as possible. It has
weird operators, unusual concepts like a politeness require-
ment, probabilistic execution, and a COME FROM statement.

4.1 Origin
Intercal is widely regarded as the first esoteric program-

ming language ever created: It was invented in 1972 by
Donald R. Woods and James M. Lyon, students at Princeton
University. They had just finished their final exam and joked
around with a friend about alternative names for punctuation
symbols (for example, calling the “"” symbol “rabbit-ears”).
According to Woods [17], this was the starting point for
a complete made-up language that differed in almost all
aspects from other languages of that time.
The language’s actual name is Compiler Language With

No Pronounceable Acronym, which made it necessary to
abbreviate it as Intercal instead. The manual [18] is full
of humorous statements. A small selection:

• “Under no circumstances confuse the mesh with the
interleave operator, except under confusing circum-
stances!”

• “Definition of array dimensions will be discussed later
in greater detail, since discussing it in less detail would
be difficult.”

• “exp represents any expression (except colloquial and
facial expressions)”

• “Precedence of operators is as follows: (The remainder
of this page intentionally left blank.)”

• “This footnote intentionally unreferenced.”

Originally, Intercal programs were written on punch
cards and used the Ebcdic character encoding, an 8-bit
encoding by IBM that included characters like the cent sym-
bol “¢”, which is not found in the Ascii standard and had
to be replaced with “$” in later versions of Intercal. In
this paper, we describe the modern C-Intercal dialect (see
section 4.5).

4.2 Description
Note that we will not describe Intercal’s full syntax and

semantics here, as it simply has too many features. We will
instead focus on the most commonly used statements, which
enable us to write a small example program.

Intercal has special names for all symbolic characters.
For example, the “@” symbol is called “whirlpool” and “%”
is called “double-oh-seven”. We will introduce the symbols’
names when they are first used.
The only value type in Intercal is an unsigned integer.

There are 16-bit integers, whose name must begin with a
spot (.), followed by a number between 1 and 65535, and
there are 32-bit integers, which start with a two-spot (:).
Literals are always 16-bit and start with a mesh (#). For
example, #42 is the literal value 42, while .42 is an unsigned
16-bit integer variable.

There are also integer arrays, whose names start with a
tail (,) for an array of 16-bit values, and a hybrid (;), for
32-bit values, whose details we will not discuss here.
There are two binary operators: The mingle operation,

denoted by a big money ($), takes two 16-bit operands and
produces a 32-bit number by alternating the operand’s bits.
For example, #7$#0 equals 42, as the bit sequences of 7 (111)
and 0 (000) are interleaved to become 101010.
The other binary operation is called select, denoted by a

squiggle (˜), and uses the second operand as a mask that
denotes which bits to select from the first operand. For
example, #255˜#42 equals 7, as the mask 101010 is applied
to the 11111111, selecting three of its 1’s and placing them
next to each other to become 111 again.
There are three unary operators, namely ampersand2 (&),

book (V), and what (?). When applied to a value, they rotate
its bits to the right, and apply the bitwise logical AND, OR,
or XOR functions on the result and the initial value. Unary
operators are placed after the type-denoting character. For
example, when applied to 77 (0000000001001101), the results
are:

#&77 = 0000000000000100 = 4
#V77 = 1000000001101111 = 32879
#?77 = 1000000001101011 = 32875

As mentioned, Intercal has no rules for operator prece-
dence, the respective page in the manual is simply blank.
To avoid ambiguities, expressions must be grouped using
sparks (’) or rabbit-ears ("). To apply a unary operator to
a sparked or rabbit-eared expression, it is placed after the
opening symbol. For example, to apply first the OR, and
then the AND operation to the number 42, one would write
"&#V42"
2The manual states that this name is already original enough.

4

An Intercal program consists of statements, which must
be prefixed with either DO, PLEASE, or PLEASE DO. Intercal
has a politeness requirement: Between 1/4 and 1/5 of all
statements must begin with PLEASE. If the ratio is smaller
than 1/5, the compiler rejects the source code for being
insufficiently polite. If it is higher than 1/4, the program is
rejected for being too sleazy.
Statements may additionally be prefixed with a line label,

which do not have to be in order. These lines may then be
jumped to using “DO (line number) NEXT”. There is even a
reversed construct: “COME FROM (line number)” will transfer
control to the current line after the specified line has been
executed. Intercal comes with a standard library, which
makes some operations easier, however, it occupies “many
line labels between 1000 and 1999”, so the programmer has
to be careful not to use those.
Assignment is done with an angle-worm:

DO .1 <- #1337

The statement “READ OUT expression” is used to output a
value (numbers are printed using Roman numerals). To read
a number, “WRITE IN variable” is used; the value’s individual
digits must be spelt out in English (like “FOUR TWO” for 42).
To exit a program, the statement GIVE UP must be used.

4.3 Example
The following programs calculates 2n for some n entered

by the user. In line 1, the exponent is read from standard
input and stored in the variable .1, which is also used as a
loop variable. The variable .4 will later contain the result
and is initialized to 1. In line 3, .2 is set to 1 as well, it will
later be used to decrement the loop variable.
Lines 5 and 12 set up a loop: After line 12 is executed, the

expression in line 5 is evaluated. The expression selects from
.1 all bits where .1 itself has a 1. That is, if .1 contains
any 1’s at all, .1˜.1 will end with at least one 1. From this
value, we select the last bit. So, the whole expression is 1
exactly if .1 is not zero. As a result, as long as .1 is not
zero yet, a jump from line 12 back to line 5 will occur.
The loop body has two steps: First, lines 7–9 multiply .4

by two by mingling it with zeroes (line 7), setting up a filter
of the form ...10101011 that selects all original bits, plus
an additional zero at the end (line 8), and applying it to
the temporary variable :1 (line 9). Second, it decrements
the loop variable .1 by calling the routine at (1010) in the
standard library, which subtracts .2 from .1 and stores the
result in .3. After the loop has ended, print the result and
exit (lines 14 and 15).

1 PLEASE WRITE IN .1
2 DO .4 <- #1
3 DO .2 <- #1
4

5 DO COME FROM ’.1~.1 ’~#1
6

7 DO :1 <- .4$#0
8 DO :2 <- #65535$#1
9 DO .4 <- :1~:2

10

11 PLEASE DO (1010) NEXT
12 (1) DO .1 <- .3
13

14 DO READ OUT .4
15 PLEASE GIVE UP

Remember that the output is in roman numerals. Here,
210 is calculated to be 1024:� �
Input: ONE ZERO
Output: MXXIV� �
4.4 Implementations
The original implementation by Woods and Lyon, which

translated Intercal to Snobol, a pattern-centered language
developed in 1962, seems to have been lost over the years. In
1990, the American software developer Eric Raymond revived
the language by releasing C-INTERCAL [19], an Inter-
cal compiler written in the C programming language, which
is by far the best known implementation today. Raymond
enhanced the instruction manual [20] significantly and added
some new features (see next section). C-Intercal does
some internal optimization, like pre-computing the result of
operations on constant values. Interestingly, C-Intercal
allows for linking with Befunge programs.

4.5 Variants
Compared to the original Intercal specification, C-In-

tercal introduced some additional statements, like the COME
FROM statement. It also added a mode called TriINTER-
CAL, which does not operate on binary values, but on
ternary ones (with a base of 3). In fact, the implementa-
tion supports all number bases up to 7 (base 8 is considered
“too useful”). C-Intercal also integrated some features of
other Intercal variants: Threaded INTERCAL spawns
multiple threads when there is more than one COME FROM
statement for one line. Backtracking INTERCAL intro-
duces the MAYBE label, that can be added to each statement.
When encountered, it saves the complete program state, so
if the respective choice turns out to be bad, the state can be
restored and another decision can be made. This mechanism
allows a very elegant formulation of backtracking algorithms.

4.6 Computational Class
As it is rather easy to write an interpreter for P ′′ (see

section 3.6) in Intercal using the standard library [21], the
language is definitely Turing-complete.

4.7 Significance
Until today, there’s quite a large community around In-

tercal. Raymond still actively maintains his C-Intercal
compiler, together with co-maintainer Alex Smith.
When the company Woods worked for was acquired by

Google in 2007, some Google employees wrote an Intercal
style guide [22], in analogy to the style guides for “proper”
languages like C++ and Python. While it is written quite
humorously, it does contain helpful recommendations and in-
sightful comments that would make realizing a large software
project in Intercal easier.
In 2003, Woods was contacted by Donald Knuth, who

wrote him he had “just spent a week writing an Intercal
program” [23] and discovered “a really cool hack” in the
standard library’s division routine [17]. In 2010, Knuth also
contacted Raymond to report some bugs in C-Intercal [24].

5. BEFUNGE
Befunge is a self-modifying, stack-based, multi-dimensional

language. It is similar to Brainfuck, but it does not operate

5

on a tape, but instead on a two-dimensional matrix. The
programs have a two-dimensional format, as well.

5.1 Origin
Befunge was invented in 1993 by Chris Pressey, and is

believed to be the first two-dimensional esoteric programming
language. Pressey’s motivation was to create a language
which was as difficult to compile as possible. Not only
the multi-dimensionality complicate the compilation process,
but also Befunge’s ability to modify its own source code.
Befunge’s stack-based computational model was inspired
by Forth, a programming language relying heavily on a
data stack and on reverse Polish notation. According to
Pressey [25], the name “Befunge” was originally a mistyping
of “before”., typed by Curtis Coleman in a BBS chat system
at 4AM.

5.2 Description
Programs in Befunge are a grid of Ascii characters with

a width of 80 and a height of 25 (a common size of old
terminal emulators like the VT100), called the playfield. Like
in Brainfuck, there is an instruction pointer, which starts at
the top-left entry, moving right. When the pointer leaves the
playfield, it wraps around to the other side. Encountered
instructions are executed. The pointer keeps moving in the
same direction, if it is not changed.
Befunge also maintains a stack of values, which can be

manipulated in various ways. Befunge has a large instruc-
tion set of 36 different commands, but in contrast to other
languages, they are really easy to understand:

+ - * / % Pop two values, add/subtract/multiply/integer-
divide/modulo them, and push the result back onto
the stack.

! Pop a value, if it is zero, push 1, otherwise, push 0.

‘ Pop two values, if the first one is smaller, push 1, other-
wise 0.

> < ^ v Move the pointer to the right/left/up/down.

? Move the pointer in a random direction.

_ Pop a value if it is 0, move right, otherwise left.

| Pop a value it it is 0, move down, otherwise up.

" Turn on stringmode: Until the next “"”, the values of
the Ascii characters will be pushed.

: Duplicate the top stack value.

\ Swap the top two stack values.

$ Discard the top stack element.

. Print the value of the topmost element and discard it.

, Print the Ascii character of the topmost element and
discard it.

Bridge: Jump over the next command.

g Pop y and x and push the Ascii value of the character
at that position in the playfield.

p Pop y, x and v, and write the Ascii value v to the position
(x, y) in the playfield.

& Read an integer from standard input and push it onto
the stack.

˜ Read a character from standard input and push it onto
the stack

@ End the program.

0-9 Push the respective number onto the stack.

The most important instructions are the direction-changing
instructions. For example, this program represents an endless
loop:

1 >v
2 ^<

Note that as calculations are done on the stack, they must
be written down in postfix notation. Values larger than
9 must be calculated beforehand, as well, because in the
program, only single digits can be specified. For example,
this program puts 42 · 23 on the stack:

1 67*83*1 -*

5.3 Example
The following program reads characters from the standard

input, and performs the ROT13 operation on them, which
moves letters by 13 places forward in the alphabet, wrapping
from Z back to A. Lowercase and uppercase letters are moved
separately. Applying ROT13 to a text twice will restore the
original. This operation is sometimes used in forums to hide
spoilers from plain view, while making it trivial to en- and
decode it.

1 >~:"‘"‘!v
2 ,v _:"z"‘v
3 ^ _:"m"‘v
4 ^ -4-9<
5 | <
6 ^ +4+9<
7 ^ _:"M"‘^
8 ^ _:"Z"‘^
9 >:"@"‘!^� �

Input: Hello, world!
Output: Uryyb, jbeyq!� �
To make the paths inside of the program more visible, we

show another version here, which has additional (redundant)
direction arrows:

1 >~:"‘"‘!v
^ v

2 ,v<<<<<<_:"z"‘v
^v v

3 ^v#<<<<<<<<<<<_:"m"‘v
^v v

4 ^v#<<-4-9< v
5 ^v |<<<<<<<<<<<
6 ^v#<<+4+9< ^

^v ^
7 ^v#<<<<<<<<<<<_:"M"‘^

^v ^
8 ^v#<<<<<_:"Z"‘^

^v ^
9 >:"@"‘!^

6

Here is a general idea of how this program works: For
each character, it is first determined whether it is in the
range a-z or A-Z, and after that, if it is between a-m or A-M,
respectively. If it is, its value is increased by 13, otherwise,
13 is subtracted. If the character is no letter at all, it is not
changed.
The execution starts with the first character in the first

line. When first encountering the >, it is ignored, as the
instruction pointer is moving to the right anyway. The ˜
instruction reads in a character and pushes its Ascii value
on the stack. This value is then duplicated (:). The first
" instruction turns the stringmode on, thus the following
character, ‘, is pushed onto the stack as the value 96 (this is
the character directly in front of “a”). The second " closes
the stringmode again. After that, the ‘ compares the two
topmost stack values, removes them, and then pushes a 1
if the top one was smaller, and a 0 otherwise. Then, the !
inverts this “truth value”.
The last instruction on that line, the v, moves the instruc-

tion pointer to the first conditional statement in line 2. If
there is a 0 on the stack, which is the case if the original
letter came after ‘ in the Ascii table, the pointer moves
right, otherwise left. If it moves right, the original value is
duplicated again and now compared to z in exactly the same
way as in line 1. This time, the truth value is not inverted,
so that we move left if our letter was larger than z, and right
otherwise. If moving right, we know that we have a lowercase
letter.
In line 3, it is finally compared to m, and control is trans-

ferred to the small C-shaped construct in the middle of the
program, coming from the right in line 5.
Depending on whether our letter is in the range a–m or

in the range n–z, the pointer moves down or up at the |
instruction. If it ends up in the lower half, 13 is added, by
pushing first a 9 on the stack, then adding it, then doing the
same with a 4. Otherwise, it is subtracted. Finally, control
is transferred to the first column (the detailed version uses
bridges (#) to jump over the v lane), where the resulting
letter is finally printed with the , instruction. After that,
the first > in line 1 closes the loop, and the process is started
again.
Note that when we find that our letter is smaller than ‘ in

line 2, we move left, and then down to line 9. Here the same
process is repeated for uppercase letters, which are larger
than @, smaller or equal to Z, and also dividable into two
groups with the M. The inner part is reused. At all other
failing tests, control is transferred back to column 1, and the
character is eventually output, whether it was changed (in
case of letters) or not (in all other cases).

5.4 Computational Class
Because of its hard space limitations (80·25 bytes), Befunge

is not Turing-complete. Without this limitation, it would
be relatively easy to implement a Brainfuck interpreter in it,
which would prove Turing completeness.

5.5 Implementations
Pressey’s original implementation, bef2c [26], compiles

Befunge-93 to C, but the resulting program works like an
interpreter, which does not allow for much optimization.
Some more advanced compilers, like befunjit [27] follow a
just-in-time approach: Instead of executing the instructions
one by one, they look for the longest static path (which does

not contain any conditional execution), and precompiles it,
which improves the runtime significantly. If the p instruc-
tion changes some of these paths by writing to them, the
paths are invalidated and recompiled. Befungee [28] is an
interpreter written in Python that provides with a graphical
debugger. Recently, Befunge for Android was released [29],
which provides a “graphical” interface and a step-by-step
functionality.

5.6 Variants
In 1998, Pressey released Befunge-98, which removes the

size restriction of the playfield, making the language Turing-
complete. Actually, Befunge-98 is a member of a generalized
family of languages, the Funge-98 family. Its members are
Unefunge, Befunge, and Trefunge, which operate in one,
two, or three dimensions respectively. In Trefunge, the form
feed character (with Ascii value 12, formerly used to eject
a page from printers), is used to increase the z-coordinate
of the source code, thus going to the next “layer” of the
program.
There are also many more languages inspired by Befunge:

Wierd, created as a collaboration on the Befunge mailing list
by Pressey, Ben Olmstead (who would later create Malbolge),
and John Colagioia, attempts to trim down the number of
instructions. In fact, there is only one instruction: All non-
whitespace characters are treated the same. The semantic is
defined by the angles formed by lines of characters in the 2D
space. PATH is a crossover between Befunge and Brainfuck:
The program’s source code is one-dimensional, but the data
pointer lives in a two-dimensional field.

5.7 Significance
In 1996, Pressey invited interested persons to join the

Befunge Mailing List, where they discussed the language and
shared code and ideas [30]. It later evolved into the Esoteric
Topics Mailing List, which (along with his Esoteric Topics
page, see section 1) seems to have contributed to the usage
of the term “esoteric” in terms of programming languages.
Befunge is still quite popular. There are some actively

maintained interpreters/compilers (including Pressey’s origi-
nal implementation), and new variants get published every
once in a while. One of the most complex Befunge programs
is able to connect to Internet Relay Chat servers and per-
form various tasks there; it consists of over 10,000 visible
characters [31].

6. MALBOLGE
Malbolge is an example of a language which is specifically

designed to be incomprehensible and hard to use. This is ac-
complished by a combination of encryption, self-modification
and the use of unpleasant operators. After the specification
was published, it took two years until the first nontrivial
program was written.

6.1 Origin
Malbolge was created in 1998 by Ben Olmstead, an Amer-

ican student at the Colorado School of Mines at the time. In
the documentation [32], he explicitly mentions that he did
not know of an esoteric programming language that made
programming in it specifically hard. In his opinion, languages
like Brainfuck and Intercal were indeed hard to read and
to write, but were created with other goals in mind: To be
minimal, and to be weird. He also considered both being too

7

useful. Hence, he created Malbolge, with the goal to make it
as difficult to use, and to be as incomprehensible as possible.
The language’s name stems from an epic poem of the Ital-

ian poet Dante, Divina Commedia, whose first part describes
the main character’s descent into the nine circles of Hell. The
eighth circle is reserved for sinners who committed conscious
fraud or treachery, and is called Malebolge (which roughly
translates from Italian to “evil pockets”). It is one of the
most unpleasant places to be in Dante’s description of Hell,
and the people in it are punished for all eternity.
When publishing the specification, Olmstead had not man-

aged to write a single Malbolge program, except from a trivial
one that exited immediately. The first nontrivial program
was written by Andrew Cooke in 2000, two years after the
specification was published. It prints HEllO WORld [33] and
was found by an extensive search algorithm. For details,
refer to section 6.3.
The first program that contained loops and aborting condi-

tions was written in 2005 by Hisashi Iizawa [34]. It is 22,561
characters long and is an implementation of the standard
program “99 bottles of beer”.

6.2 Description
Malbolge programs are machine code for a simple virtual

machine, whose CPU has three registers: The accumulator
A is used for calculations, and implicitly is set to each value
that is written to memory. The code pointer C points to
the instruction to be executed next. The data pointer D is
used to point to data regions in the memory to be modified.
Initially, all registers are set to 0.
The virtual machine has 59049 memory cells. Malbolge

operates on ternary values, a property inspired by tri-Inter-
cal. Each memory cell consists of ten trits, which means it
can contain values from 0 up to 310 = 59048.
Before the virtual machine can execute a program, it has

to load it to memory. Whitespace is ignored during this
process, and when encountering something that is not a valid
execution, the loading is aborted. Valid instructions are read
to memory, one Ascii character per cell. The remaining
uninitialized cells are filled by applying the crazy operation
(see below) to the two preceding cells. After that, execution
starts.
When encountering an instruction that is not a graphical

Ascii character (a value between 33 and 126), the program
stops. Otherwise, the CPU subtracts 33, adds C, computes
the remainder after division by 94, and then uses the result
as an index into the following character string, effectively
applying a simple substitution encryption:
+b(29e* j1VMEKLyC })8&m#~W> qxdRp0wkrUo [D7 ,XTcA"lI
.v%{ gJh4G \-=O@5 ‘_3i <?Z ’; FNQuY]szf$!BS /|t:Pn6^Ha

For example, a value of 0 would be translated to a “+”
character, and value of 1 would yield a “b”. The resulting
character then determines the instruction according to the
following table. As a convention, let [X] denote the value at
the memory location X.

j Assign [D] to D.

i Assign [D] to C.

* Rotate the trits of [D] to the right.

p Apply the crazy operation to [D] and A. This works on
tritlevel (in analogy to how bitwise operations work on

binary numbers), according to the following table (the
first operand is on the left):

0 1 2
0 1 0 0
1 1 0 2
2 2 2 1

/ Read an Ascii value from standard input, convert it to
ternary, and write it to A.3

< Convert A’s value to an Ascii character and write it to
standard output.

v Stop the program.

o Do nothing.

All other characters do the same as o: Nothing. The
difference is that they are allowed when the program is
running, but not when it is loaded. After the instruction is
executed, [C] is reduced by 33, and then is encrypted using
a different substitution string:
5z]& gqtyfr$ (we4{WP)H-Zn ,[%\3 dL+Q;>U! pJS72FhOA1C
B6v ^= I_0 /8| jsb9m <. TVac ‘uY*MK ’X~xDl} REokN :#?G"i@

After that, C and D are always incremented.

6.3 Example
For this language, instead of giving an original example, we

describe how Cooke came up with his Hello World program,
the first nontrivial piece of Malbolge code.
Cooke first introduced the notion of normalized Malbolge,

which removes the initial encryption of the program’s in-
structions and thus only consists of the valid commands j,
i, *, p, /, <, v, and o. This makes it easier to put together
Malbolge programs, as the characters do not change their
meaning depending on their location. An example is given
below.
Cooke initially tried to find a solution using genetic algo-

rithms, with the fitness function describing how correct the
output of the programs looked, but this approach failed as in
the merging step the program parts interacted in unintended
ways due to the back and forth jumps.
He then proceeded to a best-first search, set up like this:

A node in the search graph represented the machine at a
specific point in time, and thus contained the register values,
the known contents of the memory, and the output so far.
He started in a node with zeroed registers, unknown memory,
and no output. Every time the memory was accessed in the
program (for example, when fetching the next instruction), he
created eight new nodes, corresponding to the eight possible
valid instructions, essentially building a graph of all possible
program states. All nodes received a score depending on
how much of “hello world” they had printed so far, and on
how many memory accesses they had made. To save time,
he made the search case-insensitive, that is, he allowed the
characters of the string “Hello World” to be uppercase or
lowercase letters. At the nodes with the highest score, the
graph was explored first.
3Note that the specification and the official implementation
differ at this point: The specification swaps the semantics
of / and <. For compatibility, most sources consider the
implementation to be correct, and we follow this approach
here, too.

8

This seemed to work, but required a huge amount of
memory, so he made two more modifications: Each node
only stored the newly read memory cell; the complete memory
layout could then be derived from its parents. And not all
nodes of the graph were kept in memory, but only the best n
(this value is called beam width in the literature, and values
of 1000 to 10000 seemed to work well for Cooke).
This approach, running on a 500 MHz CPU, took “a few

hours” to find a program that printed the required words,
after searching about 60,000 nodes:

1 (=<‘$9]7 <5 YXz7wT .3 ,+O/o’K%$H"’~D|# z@b = ‘{^ Lx8%$X
2 mrkpohm -kNi;gsedcba ‘_^]\[ZYXWVUTSRQPONMLKJIHGFE
3 DCBA@ ? >= <;:9876543s+O<oLm� �

Output: HEllO WORld� �
For comparison, here is the same program in its normalized

form. Note, for example, that the program’s middle section
consists of many no-operation instructions which push the
last seven instructions to the required memory location:

1 jpp <jp <pop <<jo*<popp <o*p<pp <pop <pop < jijoj /o<vvj
2 popoopo <ojo/ ovooooooooooooooooooooooooooooooooo
3 oooooooooooooooooo *p<v*<*

Unfortunately, it is not really useful to explain how this
code works, as it would require a step-by-step explanation of
each executed instruction, which we would like to skip here.

6.4 Computational class
Olmstead mentioned in the initial specification that he

thought Malbolge to be Turing-complete, as it has sequential
execution, and, as he conjectured, mechanisms to repeat code
and to do conditional execution. Programs like Iizawa’s “99
bottles of beer” suggest that this might be true (if ignoring
the hard memory limit of 59049 trits).

6.5 Implementations
Olmstead’s interpreter written in C [32] is the only relevant

implementation of Malbolge, although it has two major bugs:
The meaning of the / and the < instruction is swapped, and
it is possible to have some invalid characters in the source
code when it is read to memory, but this eventually crashes
the program.

6.6 Variants
Some time after releasing the specification for Malbolge,

Olmstead worried that his language was too hard4, and thus
created another, easier language called Dis (Dis is the city
encompassing the lower circles of Dante’s Hell, including
Malebolge). Dis works very similar to Malbolge, but differs in
some aspects, which make programming easier: Dis does not
en- and decrypt instructions before and after execution; it
has a more humane crazy operation; it allows comments; and
uninitialized memory cells are set to 0. For this language,
Olmstead could indeed provide an example that copies its
input to the output.
As mentioned, the original Malbolge is not really Turing-

complete due to its hard memory limitations. Malbolge
Unshackled is a Malbolge dialect created in 2007 by Ør-
jan Johansen, that attempts to lift that restriction: The
4The most exciting program known at that time printed the
number 666 and exited.

memory cells in Malbolge Unshackled can store an unlimited
number of trits. This modification requires some adaptions
regarding how the operators work, but it does work out
eventually. Furthermore, the I/O instructions operate on
Unicode codepoints, not Ascii characters.

6.7 Significance
Around 2005, the American scientist Louis Scheffer pro-

vided a cryptoanalysis of Malbolge, uncovering several weak-
nesses in the design—like cycles in the en- and decryption
substitution tables—which make it possible to avoid some
of Malbolge’s complications [35]. He described how to store
and load values, to do simple arithmetic, and to avoid self-
modification in a systematical manner. He then used these
ideas to describe how a Brainfuck-to-Malbolge compiler could
work [36], which would be a formal proof of Turing complete-
ness (again, ignoring memory limitations). Finally, Scheffer
gave some ideas to make Malbolge even harder, like improv-
ing the substitution tables, making the crazy operation less
useful, or modifying instructions before they are executed.
In 2013, the German computer science student Matthias

Ernst wrote a Malbolge assembler (LMAO, Low-level Mal-
bolge Assembler, Ooh!), that creates Malbolge programs from
a low-level assembly language (HeLL, Hellish Low-level Lan-
guage). Using techniques from Iizawa, he also managed to
write a quine and a simple text adventure game [37].
Malbolge made an appearance in a 2012 episode of the

American crime TV series Elementary [38], in which bank
robbers use an algorithm formulated in Malbolge to break
the security system of a bank vault. Actually, the source
code depicted in the show is the “Hello World” program from
Wikipedia with a few typing errors.

7. SHAKESPEARE
Shakespeare is an esoteric language whose programs re-

sembles Shakespearean plays. It is an example for languages
whose primary characteristic is an overall theme, rather than
being defined by their programming paradigms.

7.1 Origin
The Shakespeare Programming Language (originally SPL,

but we will refer to it here as “Shakespeare”) was created in
2001 by Karl Hasselström and Jon Åslund who were studying
computer science at the Royal Institute of Technology in
Stockholm at the time. According to the language documen-
tation [39], they were given a freestyle assignment in their
Syntax Analysis class that challenged them to apply what
they had learned. They were familiar with at least Brain-
fuck and Malboge, and so decided to design and implement
their own esoteric programming language. By a coincidence,
they had occupied themselves with Shakespeare’s works a
short while before, and thought the formal structure of a
play would suit a programming language quite well. After
some months of work, they released the first version of the
Shakespeare documentation to the Internet, along with a
Shakespeare-to-C translator based on the standard UNIX
lexer and parser tools bison and flex.

7.2 Description
According to the authors, Shakespeare “combines the ex-

pressiveness of BASIC with the user-friendliness of assembly
language”. It does not support explicit loop constructions,
the programmer has resort to labels and goto-like operations

9

instead. We will now describe the structure of a Shakespeare
program: The text up to the first period is the program’s
title. It is purely aesthetic and is ignored by the compiler.
The next section is a list of all characters in the play, which
in Shakespeare’s are equivalent to variables. A character
“declaration” consists of a name (which must be an actual
character in one of Shakespeare’s plays), followed by a de-
scription and a period. The rest of the program is divided
into acts and scenes, which are numbered with roman nu-
merals. These numerals act as labels which can be jumped
to using goto statements, as we will explain in a moment.
Characters can enter or leave the stage, which is done with

the following statement:

[Enter/Exit character(s)]

Characters can talk to each other when they are on the
stage. To avoid ambiguities, there can be at most two char-
acters on the stage whenever a character is addressed. When
talking, any noun represents an integer, either a 1 (if it is a
“nice” or a neutral noun, like flower or chair), or a -1 (if it
is negative, like hell or Microsoft5). Nouns can be prefixed
with adjectives, each multiplying its value by a factor of two.
For example, to assign the value 4 to a character, the other
character on the stage could say:

You are as pretty as a
warm peaceful summer’s day.

The “as pretty as” part is optional and has no semantic,
“summer’s day” is the positive noun (with a value of 1),
multiplied with 2 two times (because of the two adjectives
“warm” and “peaceful”). To output a character’s numerical
value, the other character says:

Open your heart!

And to print the corresponding Ascii character, one would
use this phrase:

Speak your mind!

There is a similar pair of phrases to read a number/char-
acter from standard input: “Listen to your heart” and
“Open your mind”. To go to another scene, a character can
say:

Let us proceed to scene/act roman numeral

There are conditional statements, which consist of a com-
parative question and an if clause, for example:

Am I better than Mercutio? If not, ...

Finally, to make more complex data structure possible,
each character has its own stack of values. A character can
push a value onto the other’s stack with

Remember value

and pop it with

Recall free text

which makes the character take the popped value.
5It seems that the authors were using Linux. . .

7.3 Example
The following program prints the first 33 numbers of the

Fibonacci series. For better readability, it is divided into five
sections, with some comments before each of them.
The play uses three characters: Juliet saves the last two

Fibonacci numbers (one as her value, one on her stack).
Romeo counts how many numbers were output, and acts as
a temporary variable when calculating the next Fibonacci
number. Mercutio also has a double purpose: Printing space
characters and denoting how many numbers to output.

1 A drama by the numbers .
2

3 Juliet , a young Italian lady.
4 Romeo , the rich Count .
5 Mercutio , his spacy rival .

The rest of the program is divided into three scenes: In
Scene I, Mercutio assigns a 1 (“flower”) to Juliet, while she
assigns him a 32, the Ascii value of a space character. The
equivalent C code would read like the following:

mercutio = 2*2*2*2*2*(-1);
mercutio = 0 - mercutio;

After that, Juliet assigns a 0 to Romeo, whereas he makes
her output her value and pushes his own value on her stack.

6 Act I: The Act where it all happens .
7 Scene I: Juliet insults everyone .
8

9 [Enter Juliet and Mercutio]
10

11 Mercutio : You charming angel ! You are as
12 beautiful as a flower !
13

14 Juliet : You are a disgusting smelly lying
15 rotten dirty pig! You are as small as the
16 difference between nothing and thyself !
17

18 [Exit Mercutio]
19 [Enter Romeo]
20

21 Juliet : You devil ! You are nothing !
22

23 Romeo : Open your heart ! Remember me!
24

25 [Exit Juliet]

In Scene II, Romeo compares his value to Mercutio’s, and
if his is greater, he skips to scene IV where the program
terminates. Otherwise, he makes Mercutio output a space
character (“Speak your mind”), while Mercutio increments
him (“stone wall” = 1) and pushes the new value onto
Romeo’s stack.

26 Scene II: The rival ’s encounter .
27

28 [Enter Mercutio]
29

30 Romeo : Are you better than me? If not , let us
31 proceed to scene IV. Speak your mind!
32

33 Mercutio : You are as miserable as the sum of
34 thyself and a stone wall! Remember yourself !
35

36 [Exit Mercutio]

In Scene III, Juliet copies her value to Romeo. Romeo
then pops the other Fibonacci number from Juliet’s stack

10

(assigning it to her), adds the two together, makes her output
this new number and pushes his number (the now second
largest number) onto her stack. Juliet then restores his
counter value.

37 Scene III: Can I have your number ?
38

39 [Enter Juliet]
40

41 Juliet : You are me!
42

43 Romeo : Recall our eternal love! You are as
44 happy as the sum of thyself and me. Open your
45 heart ! Remember me!
46

47 Juliet : Recall that we all must die.
48

49 [Exit Juliet]
50

51 Romeo : We must return to scene II!

Finally, Scene IV is pure prose, added to give an interesting
ending.

52 Scene IV: The finale .
53

54 Mercutio : Are you better than me? You bastard .
55

56 [Exit Mercutio]
57 [Enter Juliet]
58

59 Romeo : You are my pretty rose!
60

61 Juliet : You coward ! You are as bad as Mercutio .
62 Recall my final goodbye .
63

64 [Exit Juliet]
65

66 Romeo : Am I as cursed as a damned hound ?� �
Output:
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584
4181 6765 10946 17711 28657 46368 75025 121393 196418
317811 514229 832040 1346269 2178309 3524578� �
7.4 Computational Class
Shakespeare can be shown to be Turing-complete by de-

scribing a method to execute Brainfuck programs in Shake-
speare, using two characters, whose stacks emulate Brain-
fuck’s tape, and using scenes and goto statements for loops [40].

7.5 Implementations
The original Shakespeare-to-C compiler [41] by Hassel-

ström and Åslund is the de-facto standard implementation.
There is also a Perl module [42], which makes use of metapro-
gramming to allow the programmer to write Shakespeare
code directly in a Perl script.

7.6 Variants
To our knowledge, there are no major variants of Shake-

speare, probably due to the fact that its themed appearance
rather makes it seem to be a work of art, rather than a
language specification to be improved and worked upon.
Shakespeare’s authors think that the language and its com-
piler are “done” [43], which is indeed unusual for any kind
of software, most of which undergo constant tweaks and bug
fixes.

However, there are other themed esoteric languages which
read like prose: Programs in Chef read like recipes. The
ingredients act as variables—dry ingredients are numbers,
and liquid ingredients are Unicode characters. The ingredi-
ents can be arranged in bowls (stacks) and finally are baked
(which will output their values). Taxi programs reads like
a list of directions for a taxi driver transporting passengers
(variables) through a fictional town. Destinations in this
town are operators which are applied on the passengers.
In a way, these languages are steganographic in that sense

that an uninitiated reader would not necessarily expect that
these texts are, in fact, meaningful programs.

7.7 Significance
After Shakespeare 1.0 was released in August 2001, it

gained popularity after it was mentioned on the Slashdot
news portal [44]. Soon after the language’s release, the au-
thors were asked by David Touretzky whether they would
implement DeCSS in Shakespeare, an algorithm used to
decrypt DVDs whose publication was prohibited in some
countries because of copyright infringement reasons. A per-
formance of such a program would be protected by free
speech laws and could have been legally exported to other
countries [43]. While they did not have time to do so, this
example demonstrates Shakespeare’s versatility.
In fact, in the keynote of ACM’s third History of Pro-

gramming Languages conference in 2007 [45], Guy Steele and
Richard Gabriel showed a recorded performance of an actual
Shakespeare program that outputs powers of two.

8. CONCLUSION
As we have seen, esoteric programming languages are

certainly entertaining. But besides that, we hypothesize that
they also convey a deeper significance: Esoteric programming
languages act as playgrounds for language designers, who
can use them to try out features not commonly found in
“real” programming languages, without the pressure of having
to create something usable. While there is no evidence
that this experimentation actually influenced another major
programming language, it seems highly probable that, at
some point, some language designer made a more informed
decision because of his occupation with esoteric programming
languages. Last but not least, they pose interesting, thought-
provoking puzzles to the languages’ users, which can sharpen
their minds and help them to get a better understanding of
the different ways to approach and solve problems.

References
Note: All URLs have been accessed at 2014–12–17.

[1] Douglas Harper. esoteric (adj.) — Online Etymology
Dictionary. 2014. url: http://www.etymonline.com/
index.php?term=esoteric.

[2] Chris Pressey. Chris Pressey — Esolang. June 2005.
url: http://esolangs.org/w/index.php?title=
Chris_Pressey&oldid=1358.

[3] Alan Mathison Turing. “On Computable Numbers,
with an Application to the Entscheidungsproblem”. In:
Proceedings of the London Mathematical Society s2-42.1
(1937), pp. 230–265.

[4] Brian W. Kernighan and Dennis M. Ritchie. The C
Programming Language. 1978.

11

http://www.etymonline.com/index.php?term=esoteric
http://www.etymonline.com/index.php?term=esoteric
http://esolangs.org/w/index.php?title=Chris_Pressey&oldid=1358
http://esolangs.org/w/index.php?title=Chris_Pressey&oldid=1358

[5] Douglas R. Hofstadter. Gödel, Escher, Bach: An Eter-
nal Golden Braid. 1979.

[6] Paul Bratley and Jean Millo. “Computer recreations”.
In: Software: Practice and Experience 2.4 (1972).

[7] Urban Müller. Aminet hits 5000 files. Sept. 1993. url:
http://main.aminet.net/docs/misc/5000.txt.

[8] Urban Müller. 240 byte compiler. Fun, with src. June
1993. url: http://aminet.net/package/dev/lang/
brainfuck-2.

[9] Daniel B. Cristofani. A universal Turing machine in
Brainfuck. url: http://www.hevanet.com/cristofd/
brainfuck/utm.b.

[10] Yurii Rogozhin. “Small universal Turing machines”. In:
Theoretical Computer Science 168.2 (1996).

[11] Alan Jay Perlis. “Epigrams on programming”. In: ACM
SIGPLAN Notices 17.9 (Nov. 1982), pp. 7–13.

[12] Mats Linander. awib — a brainfuck compiler written in
brainfuck. url: https://code.google.com/p/awib/.

[13] INT-E (pseudonym). Entry for the hugi size coding
competition. Apr. 1999. url: https://www.scene.org/
file.php?file=/mags/hugi/compos/hc6final.zip.

[14] Esolang authors. Esolang, the esoteric programming
languages wiki. url: http://esolangs.org/wiki/
Main_Page.

[15] Corrado Böhm. “On a family of Turing machines and
the related programming language”. In: ICC Bull 3.3
(1964), pp. 187–194.

[16] Jon Ripley. The Lost Kingdom. June 2005. url: http:
//web.archive.org/web/20131120010810/http://
jonripley.com/i- fiction/games/LostKingdomBF.
html.

[17] Naomi Hamilton. The A-Z of Programming Languages:
INTERCAL. July 2008. url: http://www.techworld.
com.au/article/251892/a-z_programming_languages_
intercal/.

[18] Donald R. Woods and James M. Lyon. The INTERCAL
Programming Language Reference Manual. 1973. url:
http://3e8.org/pub/intercal.pdf.

[19] Eric S. Raymond. The INTERCAL Resources Page.
url: http://www.catb.org/esr/intercal/.

[20] Eric S. Raymond and Alex Smith. C-INTERCAL 0.29
Revamped Instruction Manual. Nov. 2010. url: http:
//www.catb.org/esr/intercal/ick.htm.

[21] Alksentrs (pseudonym). INTERCAL Turing-completeness
proof. Jan. 2008. url: http://esolangs.org/wiki/
INTERCAL_Turing-completeness_proof.

[22] Brian Raiter. Google INTERCAL Style Guide. 2007.
url: https://cadie.googlecode.com/svn/trunk/
INTERCAL-style-guide.html.

[23] Donald E. Knuth. The TPK algorithm in INTERCAL.
Mar. 2003. url: http://www-cs-faculty.stanford.
edu/~uno/programs/tpk.i.

[24] Eric S. Raymond. Donald Knuth reads my blog? July
2010. url: http://esr.ibiblio.org/?p=2386.

[25] Chris Pressey. Curtis Coleman. url: http://catseye.
tc/node/Curtis_Coleman.

[26] Chris Pressey. Befunge-93. Sept. 1993. url: http://
catseye.tc/node/Befunge-93.html.

[27] Adrian Toncean. Befunge-93 just-in-time compiler. url:
https://github.com/madflame991/befunjit.

[28] Curtis McEnroe. Befunge-93 interpreter written in
Python with a debugger. url: https://github.com/
programble/befungee.

[29] Greg Alexander. Befunge for Android. url: https:
//play.google.com/store/apps/details?id=org.
galexander.befunge.

[30] Chris Pressey. Welcome new subscribers! Feb. 1996.
url: http://frox25.no-ip.org/~mtve/tmp/bef_
maillist_0_520.txt.

[31] Heikki Kallasjoki. fungot, a Funge-98 IRC Bot. Aug.
2008. url: http://zem.fi/2008-08-14-fungot.

[32] Ben Olmstead. Malbolge: Programming from Hell. Apr.
1998. url: http://web.archive.org/web/20000815230017/
http : / / www . mines . edu / students / b / bolmstea /
malbolge/.

[33] Andrew Cooke. malbolge: hello world. 2000. url: http:
//acooke.org/malbolge.html.

[34] Hisashi Iizawa. Malbolge (real loop version) — 99 Bot-
tles of Beer. Dec. 2005. url: http://www.99-bottles-
of-beer.net/language-malbolge-995.html.

[35] Louis Kossuth Scheffer. Introduction to Malbolge. url:
http://www.lscheffer.com/malbolge.shtml.

[36] Louis Kossuth Scheffer. Writing a BrainF*** to Mal-
bolge compiler. url: http://www.lscheffer.com/
bf2malbolge.html.

[37] Matthias Ernst.Malbolge. 2000. url: http://matthias-
ernst.eu/malbolge.html#generate_printing.

[38] Jason Hamilton. Malbolge makes a pop culture appear-
ance. Dec. 2012. url: https://www.404techsupport.
com / 2012 / 12 / esoteric - programming - language -
malbolge-makes-a-pop-culture-appearance/.

[39] Karl Hasselström and Jon Åslund. The Shakespeare
Programming Language. Dec. 2001. url: http : / /
shakespearelang.sf.net/report/shakespeare.pdf.

[40] Stux (pseudonym). Shakespeare Turing Complete? —
Esolang. Oct. 2005. url: http://esolangs.org/w/
index.php?title=Talk:Shakespeare&oldid=19987.

[41] Karl Hasselström and Jon Åslund. The Shakespeare
Programming Language. url: http://shakespearelang.
sourceforge.net/.

[42] Graham Barr. Lingua::Shakespeare. url: http : / /
search.cpan.org/dist/Lingua-Shakespeare/lib/
Lingua/Shakespeare.pod.

[43] Chloe Herrick. The A-Z of Programming Languages:
Shakespeare. June 2011. url: http://www.computerworld.
com.au/article/391510/a-z_programming_languages_
shakespeare/.

[44] Erik Tjernlund. The Shakespeare Programming Lan-
guage. Aug. 2001. url: http://developers.slashdot.
org/story/01/08/31/1126253/the- shakespeare-
programming-language.

[45] Guilherme Chapiewski. Computational Drama: Shake-
speare — YouTube. Dec. 2007. url: https://www.
youtube.com/watch?v=-e8oBF4IrgU.

12

http://main.aminet.net/docs/misc/5000.txt
http://aminet.net/package/dev/lang/brainfuck-2
http://aminet.net/package/dev/lang/brainfuck-2
http://www.hevanet.com/cristofd/brainfuck/utm.b
http://www.hevanet.com/cristofd/brainfuck/utm.b
https://code.google.com/p/awib/
https://www.scene.org/file.php?file=/mags/hugi/compos/hc6final.zip
https://www.scene.org/file.php?file=/mags/hugi/compos/hc6final.zip
http://esolangs.org/wiki/Main_Page
http://esolangs.org/wiki/Main_Page
http://web.archive.org/web/20131120010810/http://jonripley.com/i-fiction/games/LostKingdomBF.html
http://web.archive.org/web/20131120010810/http://jonripley.com/i-fiction/games/LostKingdomBF.html
http://web.archive.org/web/20131120010810/http://jonripley.com/i-fiction/games/LostKingdomBF.html
http://web.archive.org/web/20131120010810/http://jonripley.com/i-fiction/games/LostKingdomBF.html
http://www.techworld.com.au/article/251892/a-z_programming_languages_intercal/
http://www.techworld.com.au/article/251892/a-z_programming_languages_intercal/
http://www.techworld.com.au/article/251892/a-z_programming_languages_intercal/
http://3e8.org/pub/intercal.pdf
http://www.catb.org/esr/intercal/
http://www.catb.org/esr/intercal/ick.htm
http://www.catb.org/esr/intercal/ick.htm
http://esolangs.org/wiki/INTERCAL_Turing-completeness_proof
http://esolangs.org/wiki/INTERCAL_Turing-completeness_proof
https://cadie.googlecode.com/svn/trunk/INTERCAL-style-guide.html
https://cadie.googlecode.com/svn/trunk/INTERCAL-style-guide.html
http://www-cs-faculty.stanford.edu/~uno/programs/tpk.i
http://www-cs-faculty.stanford.edu/~uno/programs/tpk.i
http://esr.ibiblio.org/?p=2386
http://catseye.tc/node/Curtis_Coleman
http://catseye.tc/node/Curtis_Coleman
http://catseye.tc/node/Befunge-93.html
http://catseye.tc/node/Befunge-93.html
https://github.com/madflame991/befunjit
https://github.com/programble/befungee
https://github.com/programble/befungee
https://play.google.com/store/apps/details?id=org.galexander.befunge
https://play.google.com/store/apps/details?id=org.galexander.befunge
https://play.google.com/store/apps/details?id=org.galexander.befunge
http://frox25.no-ip.org/~mtve/tmp/bef_maillist_0_520.txt
http://frox25.no-ip.org/~mtve/tmp/bef_maillist_0_520.txt
http://zem.fi/2008-08-14-fungot
http://web.archive.org/web/20000815230017/http://www.mines.edu/students/b/bolmstea/malbolge/
http://web.archive.org/web/20000815230017/http://www.mines.edu/students/b/bolmstea/malbolge/
http://web.archive.org/web/20000815230017/http://www.mines.edu/students/b/bolmstea/malbolge/
http://acooke.org/malbolge.html
http://acooke.org/malbolge.html
http://www.99-bottles-of-beer.net/language-malbolge-995.html
http://www.99-bottles-of-beer.net/language-malbolge-995.html
http://www.lscheffer.com/malbolge.shtml
http://www.lscheffer.com/bf2malbolge.html
http://www.lscheffer.com/bf2malbolge.html
http://matthias-ernst.eu/malbolge.html#generate_printing
http://matthias-ernst.eu/malbolge.html#generate_printing
https://www.404techsupport.com/2012/12/esoteric-programming-language-malbolge-makes-a-pop-culture-appearance/
https://www.404techsupport.com/2012/12/esoteric-programming-language-malbolge-makes-a-pop-culture-appearance/
https://www.404techsupport.com/2012/12/esoteric-programming-language-malbolge-makes-a-pop-culture-appearance/
http://shakespearelang.sf.net/report/shakespeare.pdf
http://shakespearelang.sf.net/report/shakespeare.pdf
http://esolangs.org/w/index.php?title=Talk:Shakespeare&oldid=19987
http://esolangs.org/w/index.php?title=Talk:Shakespeare&oldid=19987
http://shakespearelang.sourceforge.net/
http://shakespearelang.sourceforge.net/
http://search.cpan.org/dist/Lingua-Shakespeare/lib/Lingua/Shakespeare.pod
http://search.cpan.org/dist/Lingua-Shakespeare/lib/Lingua/Shakespeare.pod
http://search.cpan.org/dist/Lingua-Shakespeare/lib/Lingua/Shakespeare.pod
http://www.computerworld.com.au/article/391510/a-z_programming_languages_shakespeare/
http://www.computerworld.com.au/article/391510/a-z_programming_languages_shakespeare/
http://www.computerworld.com.au/article/391510/a-z_programming_languages_shakespeare/
http://developers.slashdot.org/story/01/08/31/1126253/the-shakespeare-programming-language
http://developers.slashdot.org/story/01/08/31/1126253/the-shakespeare-programming-language
http://developers.slashdot.org/story/01/08/31/1126253/the-shakespeare-programming-language
https://www.youtube.com/watch?v=-e8oBF4IrgU
https://www.youtube.com/watch?v=-e8oBF4IrgU

	Introduction
	Preliminaries
	Turing machines
	Turing completeness
	Standard programs

	Brainfuck
	Origin
	Description
	Example
	Computational Class
	Implementations
	Variants
	Significance

	INTERCAL
	Origin
	Description
	Example
	Implementations
	Variants
	Computational Class
	Significance

	Befunge
	Origin
	Description
	Example
	Computational Class
	Implementations
	Variants
	Significance

	Malbolge
	Origin
	Description
	Example
	Computational class
	Implementations
	Variants
	Significance

	Shakespeare
	Origin
	Description
	Example
	Computational Class
	Implementations
	Variants
	Significance

	Conclusion

